首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1177篇
  免费   112篇
  国内免费   419篇
化学   1422篇
晶体学   20篇
力学   38篇
综合类   14篇
数学   94篇
物理学   120篇
  2024年   15篇
  2023年   66篇
  2022年   146篇
  2021年   137篇
  2020年   166篇
  2019年   134篇
  2018年   75篇
  2017年   82篇
  2016年   83篇
  2015年   67篇
  2014年   102篇
  2013年   109篇
  2012年   84篇
  2011年   57篇
  2010年   40篇
  2009年   50篇
  2008年   50篇
  2007年   54篇
  2006年   39篇
  2005年   29篇
  2004年   27篇
  2003年   21篇
  2002年   10篇
  2001年   8篇
  2000年   12篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有1708条查询结果,搜索用时 46 毫秒
71.
A two-dimensional (2D) 3,3,3,4,5,5,6-connected ZnⅡ coordination compound [Zn5(L)2(OH)6]∞ (L=9,10-dioxo-9,10-dihydroanthracene-1,8-dicarboxylate) has been synthesized and characterized by IR, elemental analysis, X-ray powder diffraction and single crystal X-ray diffraction analysis. Moreover, the luminescent properties of the ligand and corresponding compound have been briefly investigated.  相似文献   
72.
The precise and real-time sensing of the temperature within the physiological range is of great significance in biology and medicine. Here, a Zn-based metal-organic framework (MOF) named Zn-TCOMA is synthesized with good SHG performance due to its unique structure of the ligand and 3D frameworks. By encapsulating the two-photon fluorescent dye DMASE into the pores of Zn-TCOMA, the composite Zn-TCOMA?DMASE is obtained and simultaneously exhibits SHG response and two-photon fluorescence. Utilizing the intensity ratio between two-photon fluorescence of DMASE and SHG signal of Zn-TCOMA, Zn-TCOMA?DMASE exhibits ratiometric temperature sensing property at physiological temperature region of 20~60 °C with high sensitivity. This MOF thermometer also shows excellent repeatability, good biocompatibility, and high temperature resolution of 0.018 °C, opening a new avenue to develop diverse optical thermometric or thermographic applications in biotechnology or other areas.  相似文献   
73.
A Zr-based metal-organic framework has been synthesized and employed as a catalyst for photochemical carbon dioxide reduction coupled with water oxidation. The catalyst shows significant carbon dioxide reduction property with concomitant water oxidation. The catalyst has broad visible light as well as UV light absorption property, which is further confirmed from electronic absorption spectroscopy. Formic acid was the only reduced product from carbon dioxide with a turn-over frequency (TOF) of 0.69 h−1 in addition to oxygen, which was produced with a TOF of 0.54 h−1. No external photosensitizer is used and the ligand itself acts as the light harvester. The efficient and selective photochemical carbon dioxide reduction to formic acid with concomitant water oxidation using Zr-based MOF as catalyst is thus demonstrated here.  相似文献   
74.
Metal–organic framework of NH2‐MIL‐53(Al), with coordinative unsaturated aluminium sites, has been shown to be active in the Groebke–Blackburn–Bienaymé multicomponent coupling reaction based on Ugi‐type amine and aldehyde condensation over isocyanide and then a cyclization process. Interestingly this reaction occurred under solvent‐free conditions with high yield, in which the NH2‐MIL‐53(Al) could be recovered and reused for five reaction cycles, giving a total turnover number of 455.  相似文献   
75.
With [5,10,15,20‐tetra(4‐carboxyphenyl)porphyrin]Mn(III) and sterically controlled 2,2¢‐dimethyl‐4,4¢‐pyridine as the main raw materials, metal–organic framework thin films containing metalloporphyrin (MnPor‐MOF) with catalytically active sites were built up on functionalized quartz glass surfaces using a layer‐by‐layer self‐assembly method. Retaining active catalytic sites and having a porous reticular structure, the MnPor‐MOF films possessed remarkable photocatalytic activity for oxidative degradation of methylene blue in the presence of hydrogen peroxide under visible‐light irradiation. Most meaningfully, the MnPor‐MOF films were highly stable and simply and conveniently reusable, and are thus a potentially new organic material for photocatalytic wastewater treatment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
76.
Transition metal-based nanoparticle-embedded carbon materials have received increasing attention for constructing next-generation electrochemical catalysts for energy storage and conversion. However, designing hybrid carbon materials with controllable hierarchical micro/mesoporous structures, excellent dispersion of metal nanoparticles, and multiple heteroatom-doping remains challenging. Here, a novel pyridinium-containing ionic hypercrosslinked micellar frameworks (IHMFs) prepared from the core–shell unimicelle of s-poly(tert-butyl acrylate)-b-poly(4-bromomethyl) styrene (s-PtBA-b-PBMS) and linear poly(4-vinylpyridine) were used as self-sacrificial templates for confined growth of molybdenum disulfide (MoS2) inside cationic IHMFs through electrostatic interaction. After pyrolysis, MoS2-anchored nitrogen-doped porous carbons possessing tunable hierarchical micro/mesoporous structures and favorable distributions of MoS2 nanoparticles exhibited excellent electrocatalytic activity for hydrogen evolution reaction as well as small Tafel slope of 66.7 mV dec−1, low onset potential, and excellent cycling stability under acidic condition. Crucially, hierarchical micro/mesoporous structure and high surface area could boost their catalytic hydrogen evolution performance. This approach provides a novel route for preparation of micro/mesoporous hybrid carbon materials with confined transition metal nanoparticles for electrochemical energy conversion.  相似文献   
77.
Zirconium-based metal-organic framework materials (Zr−MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of “Green Chemistry”, considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr−MOFs over the past decade. In this review, the advancements of green raw materials and green synthesis methods in the synthesis of Zr−MOFs are reviewed, along with the corresponding drawbacks. The challenges and prospects are discussed and outlooked, expecting to provide guidance for the acceleration of the industrialization and commercialization of Zr−MOFs.  相似文献   
78.
A polydentate ligand bridged by a fluorene group, namely 9,9‐bis(2‐hydroxyethyl)‐2,7‐bis(pyridin‐4‐yl)fluorene (L), has been prepared under solvothermal conditions in acetonitrile. Crystals of the three‐dimensional metal–organic framework (MOF) poly[[[μ3‐9,9‐bis(2‐hydroxyethyl)‐2,7‐bis(pyridin‐4‐yl)fluorene‐κ3N:N′:O]bis(methanol‐κO)(μ‐sulfato‐κ2O:O′)nickel(II)] methanol disolvate], {[Ni(SO4)(C27H24N2O2)(CH3OH)]·2CH3OH}n, (I), were obtained by the solvothermal reaction of L and NiSO4 in methanol. The ligand L forms a two‐dimensional network in the crystallographic bc plane via two groups of O—H…N hydrogen bonds and neighbouring two‐dimensional planes are completely parallel and stack to form a three‐dimensional structure. In (I), the NiII ions are linked by sulfate ions through Ni—O bonds to form inorganic chains and these Ni‐containing chains are linked into a three‐dimensional framework via Ni—O and Ni—N bonds involving the polydentate ligand L. With one of the hydroxy groups of L coordinating to the NiII atom, the torsion angle of the hydroxyethyl group changes from that of the uncoordinated molecule. In addition, the adsorption properties of (I) with carbon dioxide were investigated.  相似文献   
79.
Covalent organic frameworks(COFs), as a class of crystalline porous materials with periodic lattices and porous structures, have received extensive attention in the fields of gas storage and separation, energy storage, catalysis and optoelectronics and so on. However, COFs are still in their infancy in the field of nuclear waste treatment, especially for sequestration of long-live problematic radionuclides, such as 99Tc. Battle of decontamination of pertechnetate(TcO4), a main existence of 99Tc under aerobic environments, is far from finished. In this review, recent progresses of COFs and some relative materials in the sequestration of pertechnetate, and perspective on surmounting the unmet issues are elucidated.  相似文献   
80.
Nanotechnology has emerged as one of the most innovative technologies and has the potential to improve food quality and safety. However, there are a few studies demonstrating that nanomaterials (NMs) are not inherently benign.This review highlights some current applications of NMs in food, food additives and food-contact materials, and reviews analytical approaches suitable to address food-safety issues related to nanotechnology.We start with a preliminary discussion on the current regulatory situation with respect to nanotechnology in relation to foods. We cover sample preparation, imaging techniques (e.g., electron microscopy, scanning electron microscopy and X-ray microscopy), separation methods (e.g., field-flow fractionation and chromatographic techniques) and detection or characterization techniques (e.g., light scattering, Raman spectroscopy and mass spectrometry). We also show the first applications of the analysis of NMs in food matrices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号